Abstract
This study concerns some new developments of unit analytic signals with non-linear phase. It includes ladder-shaped filter, generalized Sinc function based on non-linear Fourier atoms, generalized sampling theorem for non-bandlimited signals and the notion of multi-scale spectrum for discrete sequences. We first introduce the ladder-shaped filter and show that the impulse response of its corresponding linear time-shift invariant system is the generalized Sinc function as a product of periodic Poisson kernel and Sinc function. Secondly, we establish a Shannon-type sampling theorem based on generalized Sinc function for this type of non-bandlimited signal. We further prove that this type of signal may be holomorphically extended to strips in the complex plane containing the real axis. Finally, we introduce the notion of multi-scale spectrums for discrete sequences and develop the related fast algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.