Abstract

Nonstationary queueing networks are often difficult to approximate. Recent novel methods for approximating the moments of nonstationary queues use the functional version of the Kolmogorov forward equations in conjunction with orthogonal polynomial expansions. However, these methods require closed form expressions for the expectations that appear in the functional Kolmogorov forward equations. When closed form expressions cannot be easily derived, these methods cannot be used. In this paper, we present a new sampling algorithm to overcome this difficulty; our sampling algorithm accurately estimates the expectations using simulation. We apply our algorithm to priority queues, which are useful for modeling hospital triage systems. We show that our sampling algorithm accurately estimates the mean and variance of the priority queue without spending significantly more computational time than integrating ordinary differential equations. Last, we compare our sampling algorithm to the closed form analytical approximations for the Erlang-A queueing model and find that our method is comparable in time and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.