Abstract

In vivo solid-phase microextraction (in vivo SPME) is an emerging fascinating sample pretreatment technique, but its quantitative correction method is different from the traditional correction methods, which has become a bottleneck limiting its development. At present, the sampling-rate calibration and equilibrium calibration are mainly used, however, their characteristics and applicability are not clear. In this study, the sampling-rate calibration and equilibrium calibration were evaluated in the case of the determination of neonicotinoids in bananas by in vivo SPME. The factors that affect the sampling rate (Rs), such as the matrix states, sampling durations, and individual differences were studied, and they all had impacts on Rs. Conversely, the equilibrium distribution coefficient (Kfs) remained constant after extraction equilibrium and the individual differences were smaller. The highest accuracy and precision were achieved by equilibrium calibration, and the relative recoveries were in the range of 83.2 %-104.3 % with the relative standard deviations below 8.1 % compared to a standard QuEChERS-based method. The lower limits of quantification for 4 neonicotinoids in bananas were below 5 ng g−1, lower than the standard method and the maximum residue levels in China and the European Union. This work clarifies the characteristics, rules and performance of the sampling-rate calibration and equilibrium calibration, which is of crucial importance for the development and application of in vivo SPME. The developed method is convenient, sensitive, and accurate for the determination of pesticide residues, which is of great significance to guide the safe use of pesticides in the field and prevent products with excessive pesticide residues from entering the market.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.