Abstract

Histopathological identification of tumor tissue is one of the routine pathological diagnoses for pathologists. Recently, computational pathology has been successfully interpreted by a variety of deep learning-based applications. Nevertheless, the high-efficient and spatial-correlated processing of individual patches have always attracted attention in whole-slide image (WSI) analysis. In this paper, we propose a high-throughput system to detect tumor regions in colorectal cancer histology slides precisely. We train a deep convolutional neural network (CNN) model and design a Monte Carlo (MC) adaptive sampling method to estimate the most representative patches in a WSI. Two conditional random field (CRF) models are designed, namely the correction CRF and the prediction CRF are integrated for spatial dependencies of patches. We use three datasets of colorectal cancer from The Cancer Genome Atlas (TCGA) to evaluate the performance of the system. The overall diagnostic time can be reduced from 56.7 percent to 71.7 percent on the slides of a varying tumor distribution, with an increase in classification accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.