Abstract

Given a planar triangulation, a 3-orientation is an orientation of the internal edges so all internal vertices have out-degree three. Each 3-orientation gives rise to a unique edge coloring known as a Schnyder wood that has proven powerful for various computing and combinatorics applications. We consider natural Markov chains for sampling uniformly from the set of 3-orientations. First, we study a “triangle-reversing” chain on the space of 3-orientations of a fixed triangulation that reverses the orientation of the edges around a triangle in each move. We show that, when restricted to planar triangulations of maximum degree six, this Markov chain is rapidly mixing and we can approximately count 3-orientations. Next, we construct a triangulation with high degree on which this Markov chain mixes slowly. Finally, we consider an “edge-flipping” chain on the larger state space consisting of 3-orientations of all planar triangulations on a fixed number of vertices. We prove that this chain is always rapidly mixing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.