Abstract

A needle trap device (NTD) and commercial poly(dimethylsiloxane) (PDMS) 7-microm film thickness solid-phase microextraction (SPME) fibers were used for the sampling and analysis of aerosols and airborne particulate matter (PM) from an inhaler-administered drug, spray insect repellant, and tailpipe diesel exhaust. The NTD consisted of a 0.53-mm o.d. stainless steel needle having 5 mm of quartz wool packing section near the needle tip. Samples were collected by drawing air across the NTD with a Luertip syringe or via direct exposure of the SPME fiber. The mass loading of PM was varied by adjusting the volume of air pulled through the NTD or by varying the sampling time for the SPME fiber. The air volumes ranged from 0.1 to 50 mL, and sampling times varied from 10 s to 16 min. Particulates were either trapped on the needle packing or sorbed onto the SPME fiber. The devices were introduced to a chromatograph/mass spectrometer (GC/MS) injector for 5 min desorption. In the case of the NTD, 10 microL of clean air was delivered by a gas-tight syringe to aid the introduction of desorbed analytes. The compounds sorbed onto particles extracted by the SPME fiber or trapped in the needle device were desorbed in the injector and no carry-over was observed. Both devices performed well in extracting airborne polycyclic aromatic hydrocarbons (PAHs) in diesel exhaust, triamcinolone acetonide in a dose of asthma drug and DEET in a dose of insect repellant spray. Results suggest that the NTDs and PDMS 7-microm fibers can be used for airborne particulate sampling and analysis, providing a simple, fast, reusable, and cost-effective screening tool. The advantage of the SPME fiber is the open-bed geometry allowing spectroscopic investigations of particulates; for example, with Raman microspectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.