Abstract

We have developed a scanning HTS SQUID microscope which provides fine images of very weak magnetic field distributions. To achieve a high spatial resolution, the microscope should have high signal to noise (S/N) ratio. We have investigated a sample vibration technique which modulates the magnitude of detected magnetic field of the sample to achieve a higher S/N ratio. The sample stage was vibrated perpendicular to the plane of the SQUID with a frequency of 380 Hz by using a piezo device. The displacement of the stage was about 40 μm. The SQUID output was connected to a lock-in amplifier, and magnetic field signal was obtained using lock-in detection. In order to evaluate performance of the sample vibration technique, we measured magnetic field distributions of laser printed patterns. Observed image showed that improved S/N ratio of the SQUID microscope led to a higher spatial resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.