Abstract
We describe an accurate, yet simple and fast sample size computation method for hypothesis testing in population PK/PD studies. We use a first order approximation to the nonlinear mixed effects model and chi-square distributed Wald statistic to compute the minimum sample size to achieve given degree of power in rejecting a null hypothesis in population PK/PD studies. The method is an extension of Rochon's sample size computation method for repeated measurement experiments. We compute sample sizes for PK and PK/PD models with different conditions, and use Monte Carlo simulation to show that the computed sample size retrieves the required power. We also show the effect of different sampling strategies, such as minimal, i.e., as many observations per individual as parameters in the model, and intensive on sample size. The proposed sample size computation method can produce estimates of minimum sample size to achieve the desired power in hypothesis testing in a greatly reduced time than currently available simulation-based methods. The method is rapid and efficient for sample size computation in population PK/PD study using nonlinear mixed effect models. The method is general and can accommodate any type of hierarchical models. Simulation results suggest that intensive sampling allows the reduction of the number of patients enrolled in a clinical study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.