Abstract

For sample size calculation in clinical trials with survival endpoints, the logrank test, which is the optimal method under the proportional hazard (PH) assumption, is predominantly used. In reality, the PH assumption may not hold. For example, in immuno-oncology trials, delayed treatment effects are often expected. The sample size without considering the potential violation of the PH assumption may lead to an underpowered study. In recent years, combination tests such as the maximum weighted logrank test have received great attention because of their robust performance in various hazards scenarios. In this paper, we propose a flexible simulation-free procedure to calculate the sample size using combination tests. The procedure extends the Lakatos' Markov model and allows for complex situations encountered in a clinical trial, like staggered entry, dropouts, etc. We evaluate the procedure using two maximum weighted logrank tests, one projection-type test, and three other commonly used tests under various hazards scenarios. The simulation studies show that the proposed method can achieve the target power for all compared tests in most scenarios. The combination tests exhibit robust performance under correct specification and misspecification scenarios and are highly recommended when the hazard-changing patterns are unknown beforehand. Finally, we demonstrate our method using two clinical trial examples and provide suggestions about the sample size calculations under nonproportionalhazards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.