Abstract

An efficient strategy to approximate the failure probability function in structural reliability problems is proposed. The failure probability function (FPF) is defined as the failure probability of the structure expressed as a function of the design parameters, which in this study are considered to be distribution parameters of random variables representing uncertain model quantities. The task of determining the FPF is commonly numerically demanding since repeated reliability analyses are required. The proposed strategy is based on the concept of augmented reliability analysis, which only requires a single run of a simulation-based reliability method. This paper introduces a new sample regeneration algorithm that allows to generate the required failure samples of design parameters without any additional evaluation of the structural response. In this way, efficiency is further improved while ensuring high accuracy in the estimation of the FPF. To illustrate the efficiency and effectiveness of the method, case studies involving a turbine disk and an aircraft inner flap are included in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.