Abstract

An efficient sample pretreatment/introduction technique for the inductively coupled plasma atomic emission spectrometry (ICP-AES) using ion exchange for analyte preconcentration and matrix separation and laser ablation sampling for sample introduction has been developed. Ammonium pyrrolidine dithiocarbamate (APDC)-polystyrene films are coated on glass plates for analyte preconcentration. Repetitive laser ablation sampling of the polymer film removes the ion-exchanged metal ions from the polymer film as fine particles for sample introduction into the ICP. After immersing the sample probe in a sample solution for 5 min, the ICP emission intensity for laser ablation of the polymer film is a few times larger than that after solution nebulization. The sample probe removes only a small fraction of the sample solution and, therefore, in principle, does not disturb the original solution significantly. Single-pulse laser ablation of the polymer film shows that the ion-exchanged metal ion concentration in the film reduces exponentially with the depth of the polymer film. Ion exchange to the polymer film is probably limited by the rate of metal ion diffusion into the film. Calibration curves for Cu, Hg, Pb, and Zn show linear dynamic range of ∼1-2 orders of magnitude. The linear dynamic range for Cu increases to >3 orders of magnitude when using Pb as an internal standard. RSD of the ICP emission intensity is ∼8%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.