Abstract

Data-driven techniques like deep learning (DL) are currently being explored for inverse design problems in photonics (especially nanophotonics) to deal with the vast search space of materials and nanostructures. Many challenges need to be overcome to fully realize the potential of this approach; current workflows are specific to predefined shapes and require large upfront investments in dataset creation and model hyperparameter search. We report an improved workflow for DL based acceleration of evolutionary optimizations for scenarios where past simulation data is nonexistent or highly inadequate and demonstrate its utility considering the example problem of multilayered thin-film optics design. For obtaining sample-efficiency in surrogate training, novel training loss functions that emphasize a model’s ability to predict a structurally similar spectral response rather than minimizing local approximation error are proposed. The workflow is of interest to extend the ambit of DL based optics design to complicated structures whose spectra are computationally expensive to calculate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.