Abstract

Atmospheric aerosols can consist of, amongst others, compounds like NH(4)NO(3) or (NH(4))(2)SO(4). Such components can suffer radiation damage and/or evaporate during EDXRF measurements, providing errors on successively applied analysis. The aim of this work is to investigate the influence of measurements using conventional EDXRF on the volatile compounds and to compare it with the influence of polarized beam EDXRF using secondary targets (and hence indirect irradiation). The effect of different parameters (acquisition time, accelerating voltage, current and medium) on the concentration loss was studied. The measurements performed in vacuum during a long period lead to the highest losses of volatile compounds. The influence of direct irradiation was proved to be larger than the indirect variant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.