Abstract
The maturation of bacterial molybdoenzymes is a complex process leading to the insertion of the bulky bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor into the apo-enzyme. Most molybdoenzymes were shown to contain a specific chaperone for the insertion of the bis-MGD cofactor. Formate dehydrogenases (FDH) together with their molecular chaperone partner seem to display an exception to this specificity rule, since the chaperone FdhD has been proven to be involved in the maturation of all three FDH enzymes present in Escherichia coli. Multiple roles have been suggested for FdhD-like chaperones in the past, including the involvement in a sulfur transfer reaction from the l-cysteine desulfurase IscS to bis-MGD by the action of two cysteine residues present in a conserved CXXC motif of the chaperones. However, in this study we show by phylogenetic analyses that the CXXC motif is not conserved among FdhD-like chaperones. We compared in detail the FdhD-like homologues from Rhodobacter capsulatus and E. coli and show that their roles in the maturation of FDH enzymes from different subgroups can be exchanged. We reveal that bis-MGD-binding is a common characteristic of FdhD-like proteins and that the cofactor is bound with a sulfido-ligand at the molybdenum atom to the chaperone. Generally, we reveal that the cysteine residues in the motif CXXC of the chaperone are not essential for the production of active FDH enzymes.
Highlights
Molybdoenzymes comprise a large group of redox enzymes present in all kingdom of life [1]
A phylogenetic view of the FdhD family of molecular chaperones for formate dehydrogenases (FDH) enzymes Analysis of bacterial and archaeal genome sequence data in 5 phyla and 33 taxonomic families revealed a wide distribution of homologues to the E. coli FdhD protein (Fig 1)
They are often encoded in the same operon together with the structural genes for FDH enzymes or in vicinity to genes involved in molybdenum cofactor (Moco) biosynthesis [22]
Summary
Molybdoenzymes comprise a large group of redox enzymes present in all kingdom of life [1]. For enzymes of the DMSO reductase family, these chaperones are referred to as redox enzyme maturation proteins (REMPs) [14]. These chaperones are highly specific for their target enzyme [15]. The chaperones for the DMSO reductase family enzymes were divided into different subfamilies: the NarJ-like chaperones for nitrate reductases, the DmsD-like chaperones for periplasmic DMSO reductases, the TorD-like chaperones for TMAO reductases, the YcdY-like chaperones for maturation of the YcdX proteins, and the FdhD-like chaperones for the maturation of several distinct FDHs [13, 16,17,18]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.