Abstract

SummaryNeuronal alternative splicing is a core mechanism for functional diversification. We previously found that STAR family proteins (SAM68, SLM1, SLM2) regulate spatiotemporal alternative splicing in the nervous system. However, the whole aspect of alternative splicing programs by STARs remains unclear. Here, we performed a transcriptomic analysis using SAM68 knockout and SAM68/SLM1 double-knockout midbrains. We revealed different alternative splicing activity between SAM68 and SLM1; SAM68 preferentially targets alternative 3′ UTR exons. SAM68 knockout causes a long-to-short isoform switch of a number of neuronal targets through the alteration in alternative last exon (ALE) selection or alternative polyadenylation. The altered ALE usage of a novel target, interleukin 1 receptor accessory protein (Il1rap), results in remarkable conversion from a membrane-bound type to a secreted type in Sam68KO brains. Proper ALE selection is necessary for IL1RAP neuronal function. Thus the SAM68-specific splicing program provides a mechanism for neuronal selection of alternative 3′ UTR isoforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.