Abstract

The study investigated the roles and mechanisms of Salvianolic acid B (Sal B) on permeability of rat brain microvascular endothelial cells (RBMECs) exposed to high glucose. The results demonstrated that Sal B greatly up-regulated the expression of tight junction (TJ) proteins and decreased the permeability of RBMECs compared with the control group. And the increase of reactive oxidative species (ROS) production, the upregulation of hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) protein induced by high glucose were antagonized by Sal B. In addition, a great decrease of microRNA-200b (miR-200b) was observed in the RBMECs under high-glucose condition, which was significantly increased by Sal B pretreatment. And overexpression of miR-200b markedly attenuated the RBMECs permeability and inhibited the expression of VEGF protein by targeting with 3′-UTR of its mRNA. This led to the conclusion that Sal B-mediated improvement of blood-brain barrier dysfunction induced by high-glucose is related to the ROS/HIF-1α/VEGF and miR-200b/VEGF signaling pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.