Abstract

The mechanism of conversion of globular native proteins into amyloid fibrils represents one of the most attractive research topics in biophysics, because of its involvement in the development of severe pathologies and in various biotechnological processes. Aqueous medium properties, such as pH and ionic strength, as well as interactions with other species in solution, play a key role in tuning the fibrillization process. Here, we describe a comparative study of the influence of different ions from the Hofmeister series on the thermal unfolding and aggregation propensity of MNEI, a model protein, selected because of its tendency to form amyloid aggregates at acidic pH, even at temperatures well below its melting temperature. By selecting a temperature at which only negligible amounts of protein are unfolded, we have focused on the effect of ions on fibril formation. ThT fluorescence experiments indicated that all the salts examined increased the rate and the extent of fibrillization. Moreover, we found that anions, particularly sulfate, strongly influence the process, which instead is only marginally affected by different cations. Finally, a specific link to the chloride concentration was detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.