Abstract

We report the long-range orientational organization of water using polarization-resolved second harmonic scattering operated in a right-angle configuration. A transition is observed between the neat water orientational organization involving an azimuthal molecular orientation distribution towards a radial molecular orientation distribution when salt is added. These two orientational phases are quantitatively described using a molecular model of the second harmonic scattering response. It is observed that the long-range correlation present in the neat water phase abruptly disappears and is replaced by a shorter range correlation centered around the ions as the salt concentration is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.