Abstract
The formation of self-assembled nanotubes is usually accounted for by anisotropic elastic properties of membranelike precursors. We present experimental data as evidence of the role played by electrostatics in the formation of self-assembled tubes in alkaline aqueous suspensions of lithocholic acid (LCA). Striking salt effects are characterized by comparing the rheological, dynamical, and scattering properties of systems prepared either in stoichiometric neutralization conditions (SC) of LCA or in a large excess of sodium hydroxide (EOC, experimentally optimized conditions) and finally, in two steps: stoichiometric neutralization followed by an appropriate addition of NaCl (AISC). The SC liquid system is originally made up of loose helical ribbons (previous transmission electron microscopy data), and upon aging they exhibit both intra- and interordering processes. Initially, the helical ribbons are loose and progressively wind around a cylinder (R = 330 Å) with their edges exposed to the solvent. They can be temporarily organized in a centered rectangular two-dimensional lattice (pgg, a = 224 Å, b = 687 Å). Upon further aging, the ribbons wind into more compact helical ribbons (or tubes with helical grooves): their edges are less-exposed and their ordering vanishes. Upon addition of NaCl salt (as in the AISC systems), the specific screening of the intra-aggregate electrostatic repulsions induces the closure of the ribbons into tubes (R(ext) = 260 Å, R(int) = 245 Å as in the EOC systems). Simultaneously with the closure of the ribbons into plain tubes, a drastic enhancement of their interconnectivity through van der Waals attractions develops. Eventually, gels are obtained with networks having hexagonal bundles of tubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.