Abstract

DJ has received research funding from Fundacao para a Ciencia e a Tecnologia (FCT, grant number SFRH/BD/80001/2011). VM was supported by FCT fellowship (grant SFRH/BPD/77486/2011), financed by the European Social Funds (COMPETE-FEDER) and national funds of the Portuguese Ministry of Education and Science (POPH-QREN). We thank the support of FCT grant number PEst-OE/AGR/UI0211/2011-2014 and UID/MULTI/00211/2013.

Highlights

  • Salmonella enterica is one of the most important causes of gastrointestinal infection in humans, being the great majority of infections related to the consumption of poultry meat and eggs (Foley and Lynne, 2008; EFSA/ECDC, 2015).In animals, infections caused by serotype Enteritidis are rarely responsible for severe disease with animals frequently becoming asymptomatic carriers, except in the case of young chicks and poults, where outbreaks exhibiting clinical disease are often accompanied by high mortality rates (Foley et al, 2008, 2013)

  • Infections caused by serotype Enteritidis are rarely responsible for severe disease with animals frequently becoming asymptomatic carriers, except in the case of young chicks and poults, where outbreaks exhibiting clinical disease are often accompanied by high mortality rates (Foley et al, 2008, 2013)

  • LV60 was tested for its antimicrobial resistance through the determination of minimum inhibitory concentrations (MICs) using the agar dilution method, as previously described (Clemente et al, 2013) and according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines

Read more

Summary

Introduction

Infections caused by serotype Enteritidis are rarely responsible for severe disease with animals frequently becoming asymptomatic carriers, except in the case of young chicks and poults, where outbreaks exhibiting clinical disease are often accompanied by high mortality rates (Foley et al, 2008, 2013). Antibiotic resistance determinants can facilitate their survival, with ubiquitous chromosomally encoded efflux mechanisms, playing an important role in both intrinsic, and acquired multidrug resistance. Other resistance mechanisms, such as changes in the membrane permeability, enzymatic modification, and target alterations may increase the levels of bacterial resistance, contributing to the success of the infection (Poole, 2004; Delmar et al, 2014; Li et al, 2015)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.