Abstract
PurposeThe aim of this study was to compare saliva flow and protein composition induced using five basic taste stimulations between natural and bioengineered salivary glands. Materials and methodsWe developed a mouse saliva secretion model using taste stimulation and analyzed the saliva secretion from natural and bioengineered salivary glands using an assay. The protein components and alpha-amylase in the natural and bioengineered saliva were analyzed by gel electrophoresis and Western blotting. ResultsThe salivary flow responses induced by sour (citric acid) and bitter (quinine-HCl) stimuli were significantly high in the natural and bioengineered salivary glands. Although the protein concentrations in the natural and bioengineered saliva induced using five basic taste stimulations were similar, the protein composition and the amylase concentration in the natural saliva after taste stimulation had different profiles. Sympathetic and non-sympathetic nerves were observed around the acini and ducts in the natural and bioengineered salivary glands. However, the frequency of neuropeptide Y-positive sympathetic nerves in the bioengineered gland was relatively high compared to that in the natural gland. ConclusionsThese results suggest that the signal balance between the sympathetic and parasympathetic components of the efferent nerves in an engrafted bioengineered salivary gland may differ from that in a natural salivary gland.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.