Abstract

BackgroundEnhancing angiogenesis is critical for accelerating wound healing. Application of different types of exosomes (Exos) to promote angiogenesis represents a novel strategy for enhanced wound repair. Saliva is known to accelerate wound healing, but the underlying mechanisms remain unclear.ResultsOur results have demonstrated that saliva-derived exosomes (saliva-Exos) induce human umbilical vein endothelial cells (HUVEC) proliferation, migration, and angiogenesis in vitro, and promote cutaneous wound healing in vivo. Further experiments documented that Ubiquitin-conjugating enzyme E2O (UBE2O) is one of the main mRNAs of saliva-Exos, and activation of UBE2O has effects similar to those of saliva-Exos, both in vitro and in vivo. Mechanistically, UBE2O decreases the level of SMAD family member 6 (SMAD6), thereby activating bone morphogenetic protein 2 (BMP2), which, in turn, induces angiogenesis.ConclusionsThe present work suggests that administration of saliva-Exos and UBE2O represents a promising strategy for enhancing wound healing through promotion of angiogenesis.

Highlights

  • Enhancing angiogenesis is critical for accelerating wound healing

  • Western blotting documented that the particles contained enriched proteins CD81 and tumor susceptibility gene 101 protein (TSG101), but did not contain calnexin (Fig. 1c), confirming that the Exos were successfully isolated from the salivary samples

  • Saliva‐Exos accelerate cutaneous wound healing in vivo To determine the role of saliva-Exos in wound repair, equal amounts of phosphate buffer saline (PBS), saliva, and saliva-Exos were injected around the wound site

Read more

Summary

Introduction

Enhancing angiogenesis is critical for accelerating wound healing. Application of different types of exosomes (Exos) to promote angiogenesis represents a novel strategy for enhanced wound repair. Saliva is known to accelerate wound healing, but the underlying mechanisms remain unclear. Chronic wounds impact the health and quality of life of patients and pose a significant socioeconomic burden for the entire healthcare system [2]. Exos are small vesicles enriched with bioactive molecules such as lipids, proteins, mRNAs, and miRNAs [10]. Exos, containing these molecules, can be transferred into target cells to affect cellular functions [11, 12].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.