Abstract

Phenomenological relativistic optical models for scattering of nucleons from a spin-0 nucleus mainly use two different approaches. In the first, one essentially uses the Schroedinger equation incorporating appropriate relativistic kinematical terms. In the second approach, which is superior especially in reproducing spin observables, one starts with the Dirac equation and obtains an equivalent Schroedinger equation which forms a convenient basis for the calculation of experimental observables. Adopting a mathematical procedure developed earlier within the framework of potential scattering, we calculate the regionwise contribution to the reaction cross section for spin-1/2--spin-0 systems using both these types of relativistic optical models. The relative importance of different regions of intermediate energy optical potential in generating the total reaction cross section is examined using the method of regionwise absorption and it is found that reaction process is surface dominant. These findings are further elaborated by depicting the general features of [ital S] matrix and scattering amplitudes as a function of angular momentum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.