Abstract
Visual saliency has been an increasingly active research area in the last ten years with dozens of saliency models recently published. Nowadays, one of the big challenges in the field is to find a way to fairly evaluate all of these models. In this paper, on human eye fixations, we compare the ranking of 12 state-of-the art saliency models using 12 similarity metrics. The comparison is done on Jian Li's database containing several hundreds of natural images. Based on Kendall concordance coefficient, it is shown that some of the metrics are strongly correlated leading to a redundancy in the performance metrics reported in the available benchmarks. On the other hand, other metrics provide a more diverse picture of models' overall performance. As a recommendation, three similarity metrics should be used to obtain a complete point of view of saliency model performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.