Abstract

Protein kinase CK2 is a Ser/Thr kinase, with a constitutive activity, that is considered as a promising target for cancer therapy. The currently available CK2 inhibitors lack the potency and the pharmacological properties necessary to be suitable and successful in clinical settings. We report the development of new potent CK2 inhibitors from salicylaldehyde derivatives identified by automated screening of a proprietary small-molecule library. Docking simulations and analysis of the structure–activity relationship for the hits allowed to determine their binding modes on CK2, and to carry out the optimization of their structures. This strategy led to the discovery of potent CK2 inhibitors with novel structures, one of which was able to inhibit CK2 activity in living cells and promote tumor cell death. The essential features required for potent CK2 inhibitory activity of this class of compounds are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.