Abstract

We report on a computational model of retinal motion sensitivity based on correlation-based motion detectors. We simulate object motion detection in the presence of retinal slip caused by the salamander's head movements during locomotion. Our study offers new insights into object motion sensitive ganglion cells in the salamander retina. A sigmoidal transformation of the spatially and temporally filtered retinal image substantially improves the sensitivity of the system in detecting a small target moving in place against a static natural background in the presence of comparatively large, fast simulated eye movements, but is detrimental to the direction-selectivity of the motion detector. The sigmoid has insignificant effects on detector performance in simulations of slow, high contrast laboratory stimuli. These results suggest that the sigmoid reduces the system's noise sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.