Abstract

PurposePrefabricated building (PB) uses factory production and onsite assembly, which differs from traditional construction methods. This special construction approach may lead to dissimilar safety risks and challenges. Traditional safety assessment methods may not adequately and accurately assess the safety risks of PB construction. This paper aims to develop a new concept and methodology for targeted improvement in assessing PB safety risks.Design/methodology/approachRisk factors and indicators were established based on literature review and expert inputs. A structural equation model (SEM) was developed to investigate the relationships among three main risk categories: objects, workers and management. SEM analyzed the intricate associations between indicators and deepened understanding of safety risks. The model was tailored for China’s PB construction projects to enhance safety-risk management.FindingsThe cloud model evaluation validated the SEM model. A PB case study project tested and verified the model, evaluated its efficacy and quantified its safety performance and grade. We identified significant safety risk impacts across the three risk categories, safety-control level and specific areas that require improvement. The SEM model established a robust safety evaluation indicator system for comprehensive safety assessment of PB construction.Practical implicationsPractical recommendations provide valuable insights for decision-makers to enhance construction efficiency without compromising safety. This study contributed to the conceptual foundation and devised a novel method for evaluating safety performance in PB construction for safer and more efficient practices.Originality/valueThis study departed from the traditional method of calculating weights, opting instead for the SEM method to determine the weights of individual risk indicators. Additionally, we leveraged the cloud model to mitigate the influence of subjective factors in analyzing questionnaire survey responses. The feasibility and reliability of our proposed method were rigorously tested and verified by applying it to the PB case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.