Abstract

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the combined use of cyclooctene homopolymer (PCOE) and cobalt stearate (CoS) intended as a oxygen scavenger in the packaging of all kinds of food stored at room temperature or below for up to 6 months. The CoS is the oxidation catalyst and the PCOE is intentionally oxidised for the oxygen scavenging function. They are incorporated into a plastic layer that is intended to be either in direct or indirect contact with the food. The potential migration of cobalt and cyclooctene monomer were below their respective specific migration limit (SML). The potential migration of PCOE non‐oxidised oligomeric low molecular weight fraction (LMWF) < 1,000 Da was estimated to be up to ■■■■■ The Panel concluded that this fraction does not raise concern for genotoxicity potential and that the no observed adverse effect level (NOAEL) derived from a subchronic toxicity study would ensure a margin of exposure large enough to not raise a safety concern. However, the Panel considered the analysis of the oxidised PCOE LMWF not sufficiently comprehensive, i.e. that additional oxidation products of different nature may be formed, and that the limit of detection corresponding to ca. ■■■■■ for individual substances is too high. The oxidised PCOE LMWF was not covered by the genotoxicity tests or the 90‐day study on the PCOE oligomers. The assessment of the identified potential oxidised migrants was considered conclusive, but not that of the migrants having remained undetected. Therefore, the CEP Panel was not able to conclude on the safety of the proposed use of cyclooctene homopolymer and cobalt stearate together as active substances in a layer for scavenging oxygen, either in direct contact with the food or separated from the food by a passive layer of polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.