Abstract

Melioidosis is a neglected tropical disease caused by the Gram-negative soil bacterium Burkholderia pseudomallei. Current antibiotic regimens used to treat melioidosis are prolonged and expensive, and often ineffective because of intrinsic and acquired antimicrobial resistance. Efforts to develop new treatments for melioidosis are limited by the risks associated with handling pathogenic B. pseudomallei, which restricts research to facilities with biosafety level three containment. Closely related nonpathogenic Burkholderia can be investigated under less stringent biosafety level two containment, and we hypothesized that they could be used as model organisms for developing therapies that would also be effective against B. pseudomallei. We used microbroth dilution assays to compare drug susceptibility profiles of three B. pseudomallei strains and five nonpathogenic Burkholderia strains. Burkholderia humptydooensis, Burkholderia thailandensis, and Burkholderia territorii had similar susceptibility profiles to pathogenic B. pseudomallei that support their potential as safer in vitro models for developing new melioidosis therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.