Abstract

AbstractSafe and socially compliant navigation in a crowded environment is essential for social robots. Numerous research efforts have shown the advantages of deep reinforcement learning techniques in training efficient policies, while most of them ignore fast-moving pedestrians in the crowd. In this paper, we present a novel design of safety measure, named Risk-Area, considering collision theory and motion characteristics of different robots and humans. The geometry of Risk-Area is formed based on the real-time relative positions and velocities of the agents in the environment. Our approach perceives risk in the environment and encourages the robot to take safe and socially compliant navigation behaviors. The proposed method is verified with three existing well-known deep reinforcement learning models in densely populated environments. Experiment results demonstrate that our approach combined with the reinforcement learning techniques can efficiently perceive risk in the environment and navigate the robot with high safety in the crowds with fast-moving pedestrians.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.