Abstract
Bioconversion of lignocellulosic wastes to valuable end-products via multi-enzymatic hydrolysis is a potential low costing process for large-scale application in many industrial sectors. Thus, in this study, among thirty local fungal isolates, Aspergillus niger which gave the highest cellulase production, was identified under the accession number MZ062603 in GeneBank. Three types of pre-treatments (0.0–0.7%) acid, (0.0–2%) alkali, and (70–90 °C) hot water were applied to increase wheat straw (WS) digestibility by A. niger, and 1% NaOH treated WS was superior to the other pre-treatments (acid and hot water). During solid-state fermentation, the total cellulolytic activity of [filter-paper cellulase (FPase), carboxy-methyl cellulase (CMCase), and β- glucosidase (βGase)] increased about 2.8-fold. While reducing sugar was increased by 3.1 times. The optimum values of total cellulases activities and reducing sugar (8907.2 and 92.4 mg/gds) were obtained after 3 days of incubation at 30 °C and pH 5.2 at 75% v/w moisture using 3 days old inoculum (106 spores/mL/gds). The WS substrate which was subjected to alkali pre-treatment subsequent to fungal bioconversion was varied in its chemical composition and detailed structure compared to the raw and alkali pre-treatment ones as indicated by its chemical analysis, Scanning electron microscopy (SEM) observation, Fourier Transform Infra-red Spectroscopy (FTIR), and X-Ray Diffraction (XRD). All these analyses revealed that the lignocellulosic matrix was completely destroyed after the fungal treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.