Abstract

In this paper we apply modified Newton method based on sample average approximation (SAA) to solve stochastic variational inequality with stochastic second-order cone constraints (SSOCCVI). Under some moderate conditions, the SAA solution converges to its true counterpart with probability approaching one at exponential rate as sample size increases. We apply the theoretical results for solving a class of stochastic second order cone complementarity problems and stochastic programming problems with stochastic second order cone constraints. Some illustrative examples are given to show how the globally convergent method works and the comparison results between our method and other methods. Furthermore, we apply this method to portfolio optimization with loss risk constraints problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.