Abstract

Activation of voltage-dependent channels involves charge-moving conformational changes of the voltage sensor that can be detected as gating currents. In Shaker K channels, the S4 sequence comprises at least part of the voltage sensor. We have measured gating currents in three S4 mutants: R368Q, R377K, and R371Q. R368Q enhances the separation of two components of charge movement and greatly reduces the valence of one component. R377K partially uncouples charge movement from channel opening. In contrast, the gating currents of R371Q resemble those of the control. Two other S4 mutations, R377Q and K374Q, make proteins that are not properly processed and transported to the cell surface and thereby eliminate the gating current. To explain the effects of R368Q, we hypothesize that R368 is part of a salt bridge that is broken early in activation. Subsequently, the S4 segment undergoes a conformational change, and, after a final, relatively voltage-independent step, the channel opens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.