Abstract

GluN2B-containing N-methyl-d-aspartate (NMDA) receptors in the brain are known to have an important role in drug-associated learning and memory. Selective blockage of GluN2B-containing NMDA receptors (GluN2B-NMDARs) has been shown to impair morphine-induced conditioned place preference (CPP) without affecting natural reward-induced CPP. In the present study, GluN2B transgenic rats with over-expressed GluN2B-subunits in the forebrain were used to assess the susceptibility to CPP induced by morphine and natural rewards as well as to naloxone-induced conditioned place aversion (CPA). The results showed that GluN2B transgenic rats exhibited a relatively higher susceptibility to morphine-induced CPP and naloxone-induced CPA than their wild-type littermates did, while they retained the similar sensitivity as wild-type rats to CPP induced by natural reinforcers (food and sucrose). These findings suggest that increased level of GluN2B-NMDARs in forebrain facilitates formation of drug-related memory, but not that associated with natural rewards. GluN2B-NMDARs might be a potential target for the treatment of drug abuse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.