Abstract

IntroductionAccumulation of vascular smooth muscle cells (VSMCs) within the neointimal region is a hallmark of atherosclerosis and vessel injury. Evidence has shown that Sca-1-positive (Sca-1+) progenitor cells residing in the vascular adventitia play a crucial role in VSMC assemblages and intimal lesions. However, the underlying mechanisms, especially in the circumstances of vascular injury, remain unknown.Methods and resultsThe neointimal formation model in rats was established by carotid artery balloon injury using a 2F-Forgaty catheter. Most Sca-1+ cells first appeared at the adventitia of the vascular wall. S100B expressions were highest within the adventitia on the first day after vessel injury. Along with the sequentially increasing trend of S100B expression in the intima, media, and adventitia, respectively, the numbers of Sca-1+ cells were prominently increased at the media or neointima during the time course of neointimal formation. Furthermore, the Sca-1+ cells were markedly increased in the tunica media on the third day of vessel injury, SDF-1α expressions were obviously increased, and SDF-1α levels and Sca-1+ cells were almost synchronously increased within the neointima on the seventh day of vessel injury. These effects could effectually be reversed by knockdown of S100B by shRNA, RAGE inhibitor (SPF-ZM1), or CXCR4 blocker (AMD3100), indicating that migration of Sca-1+ cells from the adventitia into the neointima was associated with S100B/RAGE and SDF-1α/CXCR4. More importantly, the intermediate state of double-positive Sca-1+ and α-SMA cells was first found in the neointima of injured arteries, which could be substantially abrogated by using shRNA for S100B or blockade of CXCR4. S100B dose-dependently regulated SDF-1α expressions in VSMCs by activating PI3K/AKT and NF-κB, which were markedly abolished by PI3K/AKT inhibitor wortmannin and enhanced by p65 blocker PDTC. Furthermore, S100B was involved in human umbilical cord-derived Sca-1+ progenitor cells’ differentiation into VSMCs, especially in maintaining the intermediate state of double-positive Sca-1+ and α-SMA.ConclusionsS100B triggered neointimal formation in rat injured arteries by maintaining the intermediate state of double-positive Sca-1+ progenitor and VSMCs, which were associated with direct activation of RAGE by S100B and indirect induction of SDF-1α by activating PI3K/AKT and NF-κB.

Highlights

  • Accumulation of vascular smooth muscle cells (VSMCs) within the neointimal region is a hallmark of atherosclerosis and vessel injury

  • S100 calcium-binding protein B (S100B) triggered neointimal formation in rat injured arteries by maintaining the intermediate state of double-positive Stem cell antigen-1 (Sca-1)+ progenitor and VSMCs, which were associated with direct activation of receptor for advanced glycation end-products (RAGE) by S100B and indirect induction of Stromal cell-derived factor 1 alpha (SDF-1α) by activating PI3K/Protein kinase B (AKT) and Nuclear Factor KappaB (NF-κB)

  • Sca-1+ progenitor cell migration and S100B expression during balloon injury-induced neointimal formation To explore the relationship between Sca-1+ progenitor cell migration and S100B expression during injuryinduced neointimal formation, we detected the expressions of Sca-1 and S100B in balloon-injured carotid artery by immunohistochemical staining

Read more

Summary

Introduction

Accumulation of vascular smooth muscle cells (VSMCs) within the neointimal region is a hallmark of atherosclerosis and vessel injury. Evidence has shown that Sca-1-positive (Sca-1+) progenitor cells residing in the vascular adventitia play a crucial role in VSMC assemblages and intimal lesions. Published data have shown that adventitial (Adv) Sca-1-positive (Sca-1+) progenitor cells have multiple differentiation potential into VSMCs and likely contribute to intimal lesions in vivo [3]. It is still necessary to recognize VSMC assemblages and PCI postoperative restenosis to provide novel prophylactic and therapeutic drug targets for vascular diseases, especially CAD. Sca-1+ progenitor cells reside in the inner side of the vascular adventitia; they originate neither from the bone marrow nor from the circulating cells based on genetic tracing and bone marrow transplantation [5,6,7]. The underlying mechanisms, especially in the circumstances of vascular injury, remain unknown

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.