Abstract

The kinesins-8 were originally thought to be microtubule depolymerases, but are now emerging as more versatile catalysts of microtubule dynamics. We show here that S. pombe Klp5-436 and Klp6-440 are non-processive plus-end-directed motors whose in vitro velocities on S. pombe microtubules at 7 and 23 nm s−1 are too slow to keep pace with the growing tips of dynamic interphase microtubules in living S. pombe. In vitro, Klp5 and 6 dimers exhibit a hitherto-undescribed combination of strong enhancement of microtubule nucleation with no effect on growth rate or catastrophe frequency. By contrast in vivo, both Klp5 and Klp6 promote microtubule catastrophe at cell ends whilst Klp6 also increases the number of interphase microtubule arrays (IMAs). Our data support a model in which Klp5/6 bind tightly to free tubulin heterodimers, strongly promoting the nucleation of new microtubules, and then continue to land as a tubulin-motor complex on the tips of growing microtubules, with the motors then dissociating after a few seconds residence on the lattice. In vivo, we predict that only at cell ends, when growing microtubule tips become lodged and their growth slows down, will Klp5/6 motor activity succeed in tracking growing microtubule tips. This mechanism would allow Klp5/6 to detect the arrival of microtubule tips at cells ends and to amplify the intrinsic tendency for microtubules to catastrophise in compression at cell ends. Our evidence identifies Klp5 and 6 as spatial regulators of microtubule dynamics that enhance both microtubule nucleation at the cell centre and microtubule catastrophe at the cell ends.

Highlights

  • Microtubule dynamics allow cells to rapidly assemble, remodel, or disassemble polarized arrays of microtubules

  • Dynamic instability is well described by four parameters: growth rate, shrinkage rate, catastrophe frequency and rescue frequency [2]

  • Since the biochemical behaviour of kinesin can be different for microtubules from different species [46] we have examined the effect of Klp5/6 on dynamic S. pombe microtubules, both in vitro and in vivo

Read more

Summary

Introduction

Microtubule dynamics allow cells to rapidly assemble, remodel, or disassemble polarized arrays of microtubules. Dynamic instability is well described by four parameters: growth rate, shrinkage rate, catastrophe frequency (how often microtubules switch from growth to shrinkage) and rescue frequency (how often they switch from shrinkage to growth) [2]. In cells, these parameters are all heavily regulated [3]. The tail of Kip is required in vivo for the increase in microtubule rescue frequency and reduction in microtubule shrinkage rate. These effects may result directly from binding of the Kip tail to microtubules since in vitro the tail reduces the shrinkage rate of GDP microtubules [13]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.