Abstract

Itaconate has been recently recognized as an anti-inflammatory metabolite involved in the pathogen-macrophage interface. Due to its weak electrophilicity, itaconate could modify cysteines of the protein KEAP1 and glutathione, which contribute to its anti-inflammatory effect. However, the substrates of itaconate modification in macrophages have not been systematically profiled, which largely impedes the understanding of its roles in immune responses. Here, we developed a specific thiol-reactive probe, 1-OH-Az, for quantitative chemoproteomic profiling of cysteine modifications by itaconate, and provided a global portrait of its proteome reactivity. We found that itaconate covalently modifies key glycolytic enzymes and impairs glycolytic flux mainly through inhibition of fructose-bisphosphate aldolase A (ALDOA). Moreover, itaconate attenuates the inflammatory response in stimulated macrophages by impairing the glycolysis. Our study provides a valuable resource of protein targets of itaconate in macrophages and establishes a negative-feedback link between glycolysis and itaconate, elucidating new functional insights for this anti-inflammatory metabolite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.