Abstract

In few mammalian species including rat, post-ovulatory aging induces abortive spontaneous egg activation (SEA), which is morphologically characterized by exit from metaphase-II (M-II) arrest. A possibility exists that the RyR channel-mediated insufficient increase of cytosolic free Ca(2+) level could be one of the causes for post-ovulatory aging-induced abortive SEA. To test this possibility, eggs collected after 17h post-hCG surge were cultured with or without various concentrations of nifedipine (NF), ruthenium red (RR), and KN-93 for 3h in vitro. Morphological changes characteristic of abortive SEA, cytosolic free Ca(2+) level, cyclin B1 level, and meiotic status were analyzed. Data of the present study indicate that NF and RR inhibited post-ovulatory aging-induced abortive SEA in a concentration-dependent manner. Further, RR protected against RyR channel as well as caffeine-mediated increase of cytosolic free Ca(2+) level. In addition, KN-93 inhibited post-ovulatory aging-induced abortive SEA in a concentration-dependent manner. An increase of cytosolic free Ca(2+) level was associated with a reduction of cyclin B1 level during post-ovulatory aging-induced abortive SEA. These data indirectly suggest the involvement of RyR channels in the increase of cytosolic free Ca(2+) level. The increased cytosolic free Ca(2+) level triggers cyclin B1 degradation possibly through CaMK-II activity during post-ovulatory aging-induced abortive SEA in rat eggs cultured in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.