Abstract

Ultra-wide-band-gap (UWBG) semiconductors have tremendous potential to advance electronic devices as device performance improves superlinearly with the increasing gap. Ambipolar doping, however, has been a major challenge for UWBG materials as dopant ionization energy and charge compensation generally increase with the increasing bandgap and significantly limit the semiconductor devices that can currently be realized. Using hybrid density functional theory, we demonstrate rutile germanium oxide (r-GeO2) to be an alternative UWBG (4.68 eV) material that can be ambipolarly doped. We identify SbGe, AsGe, and FO as possible donors with low ionization energies and propose growth conditions to avoid charge compensation by deep acceptors such as VGe and NO. On the other hand, acceptors such as AlGe have relatively large ionization energies (0.45 eV) due to the formation of localized hole polarons and are likely to be passivated by VO, Gei, and self-interstitials. Yet, we find that the co-incorporation of AlGe with interstitial H can increase the solubility limit of Al and enable hole conduction in the impurity band. Our results show that r-GeO2 is a promising UWBG semiconductor that can overcome current doping challenges and enable the next generation of power electronics devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.