Abstract

The structure of colloidal crystals of silica particles in water was studied by using the two-dimensional (2D) ultra-small-angle X-ray scattering (USAXS) technique. By violent shaking of the dispersion, large (body-centered cubic, bcc) crystals were broken into microcrystals while the lattice structure and lattice constant were preserved. The 2D-USAXS profiles revealed that the [111] direction of bcc microcrystals was parallel to the capillary axis and their orientational distribution with respect to the capillary axis was random. While a prepeak was observed in the one-dimensional USAXS measurements, no such peak was detected by the 2D-USAXS technique. The prepeak was concluded to be due to {110} being rotated by 54.7 degrees (the angle between [001] and [111]) from the capillary axis. The diffraction from the plane was out of the horizontal plane and was observed at a lower angle as a prepeak by detector scanning in the horizontal direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.