Abstract

Many types of physical models have been developed for runoff estimation with successful results. However, accurate estimation of runoff remains a challenging problem owing to the lack of field data and the complexity of its hydrological process. In this paper, a machine learning method for runoff estimation is presented as an alternative approach to the physical model. Various types of input variables and artificial neural network (ANN) architectures were examined in this study. Results showed that a two-layer network with the tansig activation function and the Levenberg–Marquardt learning algorithm performed the best. For this architecture, the most effective input vector consists of a catchment perimeter, canal length, slope, runoff coefficient, and rainfall intensity. However, results of multivariate analysis of variance indicated the significant interaction effect of input data and the ANN architecture. Thus, to create a suitable ANN model for runoff estimation, a systematic determination of the input vector is necessary

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.