Abstract
We have measured the running coupling constant of SU(3) gauge theory coupled to Nf=2 flavors of symmetric representation fermions, using the Schrodinger functional scheme. Our lattice action is defined with hypercubic smeared links which, along with the larger lattice sizes, bring us closer to the continuum limit than in our previous study. We observe that the coupling runs more slowly than predicted by asymptotic freedom, but we are unable to observe fixed point behavior before encountering a first order transition to a strong coupling phase. This indicates that the infrared fixed point found with the thin-link action is a lattice artifact. The slow running of the gauge coupling permits an accurate determination of the mass anomalous dimension for this theory, which we observe to be small, gamma_m < 0.6, over the range of couplings we can reach. We also study the bulk and finite-temperature phase transitions in the strong coupling region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.