Abstract
Efficient utilization of social networking sites (SNS) had reduced communication delays, at the same time increased rumour messages. Subsequently, mischievous people started sharing of rumours via social networking sites for gaining personal benefits. This falsified information (i.e., rumour) creates misconception among the people of society influencing socio-economic losses by disrupting the routine businesses of private and government sectors. Communication of rumour information requires rigorous surveillance, before they become viral through social media platforms. Detecting these rumour words in an early stage from messaging applications needs to be predicted using robust Rumour Detection Models (RDM) and succinct tools. RDM are effectively used in detecting the rumours from social media platforms (Twitter, Linkedln, Instagram, WhatsApp, Weibo sena and others) with the help of bag of words and machine learning approaches to a limited extent. RDM fails in detecting the emerging rumours that contains linguistic words of a specific language during the chatting session. This survey compares the various RDM strategies and Tools that were proposed earlier for identifying the rumour words in social media platforms. It is found that many of earlier RDM make use of Deep learning approaches, Machine learning, Artificial Intelligence, Fuzzy logic technique, Graph theory and Data mining techniques. Finally, an improved RDM model is proposed in Figure 2, efficiency of this proposed RDM models is improved by embedding of Pre-defined rumour rules, WordNet Ontology and NLP/machine learning approach giving the precision rate of 83.33% when compared with other state-of-art systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Advanced Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.