Abstract

Dietary mix and host species have both been shown to have a significant impact on rumen microbial diversity, enteric methane emission and animal performance. The goal of this study was to see how the roughage concentrate ratio 70:30 (Low concentrate; LC) vs 40:60 (High concentrate; HC) and the host species crossbred cattle vs buffalo affected rumen microbial diversity, enteric methane emissions and nutrient utilization. Dry matter intake (kg/d) and dry matter percent digestibility were considerably (p < 0.05) higher in the HC ration and buffalo compared to LC ration and crossbred cattle, respectively. Both dietary mix and host species had a substantial (p < 0.05) impact on intake of various nutrients, including organic matter (OM), crude protein (CP), ether extract (EE), neutral detergent fiber (NDF), and acid detergent fiber (ADF). Increased concentrate proportion in the ration improved nitrogen balance, resulting in increased average daily gain and considerably reduced methane (g/d) output (p < 0.05). Furthermore, 16S rRNA genes were sequenced using Oxford Nanopore Technology (ONT) and subsequently annotated using the Centrifuge workflow to uncover ruminal bacterial diversity. Firmicutes was considerably (p < 0.01) greater in the LC diet, whereas, Bacteroidetes was higher in the HC ration. Genus Prevotella dominated all rumen samples, and buffalo fed LC ration had significantly (p < 0.01) higher Oscillospira abundance. At the species level, simple sugar-utilizing bacteria such as Prevotella spp. and Selenomonas ruminantium predominated in the crossbred cattle, but fibrolytic bacteria such as Oscillospira guilliermondii were statistically (p < 0.01) more abundant in the buffalo. Overall, dietary mix and host species have both been shown to have a significant impact on rumen microbial diversity, enteric methane emission and animal performance, however, host species remained a major driving force to change ruminal community composition as compared to roughage concentrate ratio under similar environmental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.