Abstract
We consider a generalization of the classical risk model when the premium intensity depends on the current surplus of an insurance company. All surplus is invested in the risky asset, the price of which follows a geometric Brownian motion. We get an exponential bound for the infinite-horizon ruin probability. To this end, we allow the surplus process to explode and investigate the question concerning the probability of explosion of the surplus process between claim arrivals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.