Abstract
This paper considers the nonstandard renewal risk model in which a part of surplus is invested into a Black-Scholes market whose price process is modelled by a geometric Brownian motion, claim sizes form a sequence of not necessarily identically distributed and pairwise quasi-asymptotically independent random variables with dominatedly-varying tails. The authors obtain a weakly asymptotic formula for the finite-time and infinite-time ruin probabilities. In particular, if the claims are identically distributed and consistently-varying tailed, then an asymptotic formula is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.