Abstract
A research prototype software system for conceptual information retrieval has been developed. The goal of the system, called RUBRIC, is to provide more automated and relevant access to unformatted textual databases. The approach is to use production rules from artificial intelligence to define a hierarchy of retrieval subtopics, with fuzzy context expressions and specific word phrases at the bottom. RUBRIC allows the definition of detailed queries starting at a conceptual level, partial matching of a query and a document, selection of only the highest ranked documents for presentation to the user, and detailed explanation of how and why a particular document was selected. Initial experiments indicate that a RUBRIC rule set better matches human retrieval judgment than a standard Boolean keyword expression, given equal amounts of effort in defining each. The techniques presented may be useful in stand-alone retrieval systems, front-ends to existing information retrieval systems, or real-time document filtering and routing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.