Abstract

An important requirement for many novel location based services, is to determine the locations of people, equipment, animals, etc. The accuracy and response time of estimation are critical issues in location estimation system. Most of the location estimation system suffers with the problem of scalability and unavailability of all the access points at all the location for large site. In this paper, we have proposed a distributed semi-supervised location estimation method, which divide the location estimation system into subsystems. Our method partition the input signal space and output location space into clusters on the basis of visibility of access points at various locations of the site area. Each cluster of input signal space together with output location subspace is used to learn the association between Received Signal Strength fingerprint and their respective location in a subsystem. Previous methods for location estimation in indoor wireless networks require a large amount of labeled data for learning the radio map. However, labeled instances are often difficult, expensive, or time consuming to obtain, as they require great efforts, meanwhile unlabeled data may be relatively easy to collect. So, the use of semi-supervised learning is more feasible. On each subsystem at first, we use Locally Linear Embedding to reduce the dimensions of data, and then we use semi-supervised learning algorithm to learn the radio map. The algorithm performs nonlinear mapping between the received signal strengths from nearby access points and the user's location. It is shown that the proposed Distributed Semi-Supervised Locally Linear Embedding scheme has the advantage of robustness, scalability, useful in large site application and is easy in training and implementation. We have compared our results with Distributed Subtract on Negative Add on Positive (DSNAP) and benchmark method RADAR. Experimental results show that our method provide better results in terms of accuracy and response time in comparison to centralized systems, in which a single system is used for large site as well as with DSNAP and benchmark method RADAR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.