Abstract

Prostate cancer has a proclivity to metastasize to bone. The mechanism by which prostate cancer cells are able to survive and progress in the bone microenvironment is not clear. Identification of molecules that play critical roles in the progression of prostate cancer in bone will provide essential targets for therapy. Ribosomal S6 protein kinases (RSK) have been shown to mediate many cellular functions critical for cancer progression. Whether RSK plays a role in the progression of prostate cancer in bone is unknown. IHC analysis of human prostate cancer specimens showed increased phosphorylation of RSK in the nucleus of prostate cancer cells in a significant fraction of human prostate cancer bone metastasis specimens, compared with the primary site or lymph node metastasis. Expression of constitutively active myristylated RSK in C4-2B4 cells (C4-2B4/RSK) increased their survival and anchorage-independent growth compared with C4-2B4/vector cells. Using an orthotopic bone injection model, it was determined that injecting C4-2B4/RSK cells into mouse femurs enhanced their progression in bone compared with control cells. In PC3-mm2 cells, knockdown of RSK1 (RPS6KA1), the predominant RSK isoform, but not RSK2 (RPS6KA2) alone, decreased anchorage-independent growth in vitro and reduced tumor progression in bone and tumor-induced bone remodeling in vivo. Mechanistic studies showed that RSK regulates anchorage-independent growth through transcriptional regulation of factors that modulate cell survival, including ING3, CKAP2, and PTK6. Together, these data provide strong evidence that RSK is an important driver in prostate cancer progression in bone. RSK, an important driver in prostate cancer progression in bone, has promising potential as a therapeutic target for prostate cancer bone metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.