Abstract

Dense large-scale antenna deployments are one of the most promising technologies for delivering very large throughputs per unit area in the downlink (DL) of cellular networks. We consider such a dense deployment involving a distributed system formed by multi-antenna remote radio head (RRH) units connected to the same fronthaul serving a geographical area. Knowledge of the DL channel between each active user and its nearby RRH antennas is most efficiently obtained at the RRHs via reciprocity based training, that is, by estimating a user's channel using uplink (UL) pilots transmitted by the user, and exploiting the UL/DL channel reciprocity. We consider aggressive pilot reuse across an RRH system, whereby a single pilot dimension is simultaneously assigned to multiple active users. We introduce a novel coded pilot approach, which allows each RRH unit to detect pilot collisions, i.e., when more than a single user in its proximity uses the same pilot dimensions. Thanks to the proposed coded pilot approach, pilot contamination can be substantially avoided. As shown, such a strategy can yield densification benefits in the form of increased multiplexing gains per UL pilot dimension with respect to conventional reuse schemes and some recent approaches assigning pseudorandom pilot vectors to the active users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.